

Introdução à Assimilação de Dados (MET 563-3)

Histórico da Assimilação de Dados - Gandin (1963)

Dr. Carlos Frederico Bastarz
Dr. Dirceu Luis Herdies

Programa de Pós-Graduação em Meteorologia (PGMET) do INPE

15 de Outubro de 2025

Com conteúdo parcial das notas de aulas de <u>Peter Lynch</u> -*University College Dublin* *

Objective Analysis of Meteorological Fields (Gandin, 1963)

- Frimeiro trabalho a formular o problema da análise objetiva utilizando estatística
 - Até aqui, os esquemas de análise objetiva eram empíricos!
 - Lev Gandin partiu do princípio que a análise possui erros e que, portanto, as previsões e as observações posuem erros com média, variância/covariância e correlação conhecidos
- https://www.scribd.com/document/515206963/Objectiv e-Analysis-of-Meteorological-Fields

L. S. Gandin

objective analysis of meteorological fields

TRANSLATED FROM RUSSIAM

Published for the U.S. Department of Commerce and the National Science Foundation. Washington, D.C. by the Israel Program for Scientific Translations

Objective Analysis of Meteorological Fields (Gandin, 1963)

Formalização Estatística

- O campo meteorológico é uma variável aleatória com estrutura de covariância conhecida
- Os erros de observação são aleatórios, não correlacionados e de variância conhecida
- O BLUE * do campo em um ponto qualquer é dado por uma combinação linear das observações disponíveis
- Uso de funções de correlação ou covariância espacial:
 - Descrevem a relação entre dois pontos no espaço
 - Permite representar matematicamente a ideia de que pontos mais próximos tendem a ter valores mais semelhantes

* BLUE: Best Linear Unbiased Estimator

Objective Analysis of Meteorological Fields (Gandin, 1963)

Suposições Principais

- Objetivo destas suposições:
 - Viabilizar a aplicação do método nos computadores da época
- f Isotropia e homogeneidade das correlações
- Funções de correlação com decaimento exponencial simples
- F Raio de influência limita o número de observações consideradas ao redor de cada ponto de grade (escala de correlação)
- A interpolação ótima é um esquema de análise multivariado
- Durante das décadas de 1980 e 1990, foi operacional em diversos centros (inclusive no CPTEC)

^{*} Por questões práticas, muitas destas suposições ainda podem ser válidas

Objective Analysis of Meteorological Fields (Gandin, 1963)

Equação Fundamental

$$\mathbf{x}_a = \mathbf{x}_b + \mathbf{W}(\mathbf{y} - H\mathbf{x}_b)$$

- Onde:
 - \circ \mathbf{x}_a é o vetor de análise (estado estimado)
 - \circ \mathbf{x}_b é o vetor de *background* ou *first guess*
 - y é o vetor de observações
 - **W** é a matriz de peso (ou ganho)
 - $\circ H$ é o operador observação não linear (transforma o espaço do modelo para o espaço físico das observações)
- Esta equação é resolvida de forma analítica

Objective Analysis of Meteorological Fields (Gandin, 1963)

Matriz de Peso

ullet A matriz ${f W}$ determina quanto cada obvservação deve corrigir o campo de previsão:

$$\mathbf{W} = \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}$$

- Onde:
 - \circ ${f B}$ é a matriz de covariância dos erros de previsão (ela é constante)
 - $\circ \ \mathbf{R}$ é a matriz de covariância dos erros de observação
- Note que **H** é linear!

Objective Analysis of Meteorological Fields (Gandin, 1963)

Matriz de Peso

ullet A matriz f W determina quanto cada observação deve corrigir o campo de previsão:

$$\mathbf{W} = \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}$$

- **B** representa como os erros do modelo estão correlacionados espacialmente, ou seja, como uma correção em um ponto se propaga na vizinhança
- ullet representa a confiabilidade das observações (instrumentos, localização etc)
- O termo $(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}}+\mathbf{R})^{-1}$ funciona como um filtro estatístico que pondera o peso relativo do modelo e das observações \leftarrow e o termo $\mathbf{B}\mathbf{H}^{\mathrm{T}}$?

Objective Analysis of Meteorological Fields (Gandin, 1963)

Operador Observação

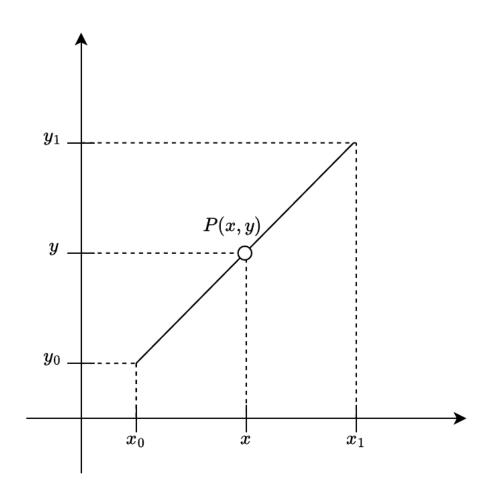
- Também chamado de forward operator $H(\mathbf{x}_b)$:
 - Permite obter o first guess das observações
 - Realiza interpolações espaciais das previsões para o ponto das observações
 - Realiza transformações das variáveis de estado do modelo em quantidades observadas (e.g., o modelo de transferência radiativa CRTM *)
- Note que ora escrevemos $\mathbf{H}(\mathbf{x}_b)$, ora escrevemos $H(\mathbf{x}_b)$:
 - \circ **\leftarrow H**(\mathbf{x}_b) é um operador linear
 - \circ $lacktriangledown H(\mathbf{x}_b)$ é um operador não linear

CRTM: Community Radiative Transfer Model

Objective Analysis of Meteorological Fields (Gandin, 1963)

Operador Observação H - operador linear

- Exemplo de interpolação linear (considere que a observação está entre dois pontos de grade; se estivesse entre 4 pontos, então a interpolação seria bilinear)
- Considerando o exemplo de uma interpolação linear, 2 pontos de grade e 1 observação, sendo que modelo e observação representam as mesmas quantidades (e.g., temperatura)



Objective Analysis of Meteorological Fields (Gandin, 1963)

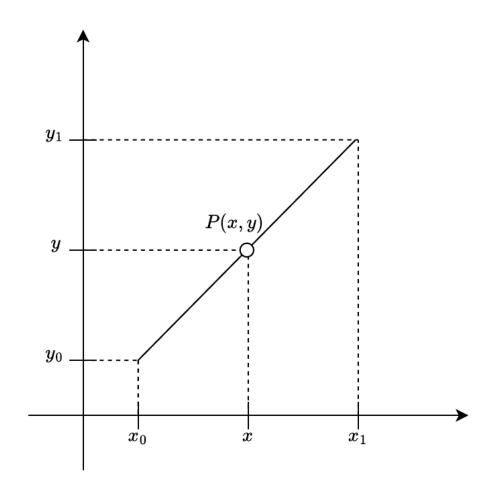
Operador Observação H - operador linear

 Utilzando a lei de proporções entre os seguimentos de reta:

$$\frac{y-y_0}{x-x_0} = \frac{y_1-y_0}{x_1-x_0}$$

 Desenvolvendo a relação e resolvendo para y, obtemos:

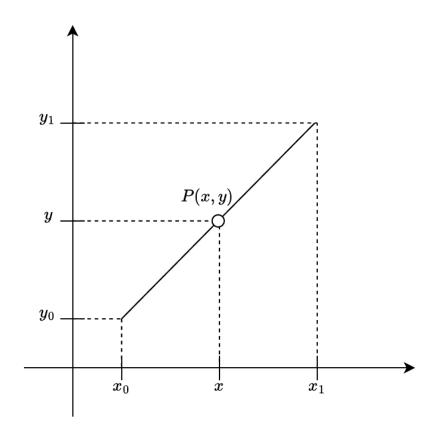
$$rac{y-y_0}{y_1-y_0} = rac{x-x_0}{x_1-x_0}$$



Objective Analysis of Meteorological Fields (Gandin, 1963)

Operador Observação ${f H}$ - operador linear

$$(y-y_0)(x-x_0)=(y-y_0)(x_1-x_0) \ rac{(y-y_0)(x_1-x_0)}{(x_1-x_0)}=rac{(y_1-y_0)(x-x_0)}{(x_1-x_0)} \ y-y_0=(y_1-y_0)rac{(x-x_0)}{(x_1-x_0)} \ y=y_0+(y_1-y_0)rac{(x-x_0)}{(x_1-x_0)}, ext{com } x_1
eq x_0$$



Objective Analysis of Meteorological Fields (Gandin, 1963)

Operador Observação ${\cal H}$ - operador não linear

• Se o modelo estivesse certo, qual seria o valor observado?

$$\circ y = \mathbf{H}(\mathbf{x})$$

- Considerando o exemplo da energia radiada por um corpo negro:
 - \circ Lei de Stefan Boltzman: $E = \sigma T^4$
 - Quando mais quente for um corpo, a energia total que ele irradia aumenta com a quarta potência da temperatura
- Neste exemplo, definiremos a temperatura T como a variável de estado (o modelo nos fornece T) e a energia radiada E como a observação (o sensor do satélite observa E):
 - $\circ E = H(T) = \sigma T^4$
 - \circ A inovação $y-H(\mathbf{x}_b)$ é então $E_{
 m observada}-H(T_{
 m modelo})$

Objective Analysis of Meteorological Fields (Gandin, 1963)

Operador Observação - ${\cal H}$ operador não linear

• Como $H(T)=\sigma T^4$ é não linear, usamos uma aproximação linear (por série de Taylor) em torno de uma temperatura de referência T_0 :

$$H(T)pprox H(T_0)+H'(T_0)(T-T_0)$$

Onde:

$$H'(T_0)=\left.rac{d}{dT}(\sigma T^4)
ight|_{T_0}=4\sigma T_0^3$$

• **Nota:** a derivada $H'(T_0)$ representa o operador tangente linear e o seu transposto, $H'^{\mathrm{T}}(T_0)$ representa o operador adjunto utilizados no 4DVar - o adjunto, é o transposto do tangente linear \mathbf{G}

Objective Analysis of Meteorological Fields (Gandin, 1963)

Matrizes de Covariâncias

- ullet B e ${f R}$ são as matrizes de covariâncias dos erros de previsão e observação, respectivamente
 - Ambas são assumidas serem conhecidas
- ullet Inclui erros dos instrumentos e de representatividade (e.g., efeitos locais) e ambos são não correlacionados
 - $\circ \ \mathbf{R} = \mathbf{R}_{ ext{instrumento}} + \mathbf{R}_{ ext{representatividade}}$
- **B** representa a covariância dos erros de previsão, i.e., como os erros na previsão do modelo estão distrbuídos no espaço e, indiretamente, no tempo
 - B define o peso que cada observação terá na análise e o raio de influência das observações por meio da escala de correlação

Objective Analysis of Meteorological Fields (Gandin, 1963)

Matrizes de Covariâncias

• De forma geral, uma matriz de covariâncias é obtida pela multiplicação do vetor de erros ϵ pelo seu transposto ϵ^{T} :

$$\epsilon = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{bmatrix} \epsilon^{ ext{T}} = [\epsilon_1 \epsilon_2 \dots \epsilon_n]$$

 Considerando um número de casos suficientemente grande, obtemos o valor experado:

$$\mathbf{P} = \overline{\epsilon \epsilon^{\mathrm{T}}} = egin{bmatrix} \overline{\epsilon_1 \epsilon_1} & \overline{\epsilon_1 \epsilon_2} & \cdots & \overline{\epsilon_1 \epsilon_n} \ \overline{\epsilon_2 \epsilon_1} & \overline{\epsilon_2 \epsilon_2} & \cdots & \overline{\epsilon_2 \epsilon_n} \ dots & dots & dots \ \overline{\epsilon_n \epsilon_1} & \overline{\epsilon_n \epsilon_2} & \cdots & \overline{\epsilon_n \epsilon_n} \end{bmatrix}$$

- Por definição, matrizes de covariâncias são **Simétricas e Positivas Definidas** (SPD)
- ullet Na diagonal principal, tem-se os elementos de variâncias $\sigma_i^2=\overline{\epsilon_i\epsilon_i}$

Objective Analysis of Meteorological Fields (Gandin, 1963)

Matrizes de Covariâncias

- Matriz Simétrica e Positiva Definida:
 - \circ **M** é simétrica se $\mathbf{M} = \mathbf{M}^{\mathrm{T}}$
 - \circ **M** é positiva definida se, para qualquer vetor coluna **x**, todos os seus autovalores forem positivos (i.e., a variância $\mathbf{x}^T\mathbf{M}\mathbf{x}>0$ é sempre positiva)
 - Isso garante que nenhuma combinação linear entre as variáveis seja negativa e que, portanto, todas as variâncias e covariâncias serão sempre positivas
 - Além disso, há a necessidade de inversões e decomposições (e.g, Cholesky) que necessitam destas propriedades
 - Garante estabilidade numérica

Objective Analysis of Meteorological Fields (Gandin, 1963)

Matrizes de Covariâncias

• Dividindo-se cada elemento da matriz de covariâncias pelo produto dos desvios-padrão, obtemos a matriz de correlação:

$$\mathbf{C} = \overline{\epsilon \epsilon^{\mathrm{T}}} = egin{bmatrix} 1 &
ho_{12} & \cdots &
ho_{1n} \
ho_{21} & 1 & \cdots &
ho_{2n} \ dots & dots & dots \
ho_{n1} &
ho_{n2} & \cdots & 1 \end{bmatrix}$$

• Onde:

 $\circ~
ho_{ij}=rac{\overline{\epsilon_i\epsilon_j}}{\sigma_i\sigma_j}$ é a correlação dos elementos ij da matriz

Objective Analysis of Meteorological Fields (Gandin, 1963)

Matrizes de Covariâncias

- De forma prática, matrizes de covariâncias podem ser decompostas
- Um exemplo:
 - $\circ \mathbf{P} = \mathbf{D}^{\frac{1}{2}} \mathbf{C} \mathbf{D}^{\frac{1}{2}}$
 - Onde **D** é a matriz com as variâncias:

$$\mathbf{D} = egin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \ 0 & \sigma_1^2 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & \sigma_1^2 \end{bmatrix}$$

Objective Analysis of Meteorological Fields (Gandin, 1963)

Equações da Interpolação Ótima

Equação de Análise

• A análise é obtida adicionando-se ao campo de background o produto entre a matriz peso e a inovação:

$$\mathbf{x}_a = \mathbf{x}_b + \mathbf{W}(\mathbf{y} - H\mathbf{x}_b)$$

• A matriz peso é dada pela covariâncias do erro da previsão no espaço físico ($\mathbf{B}\mathbf{H}^{\mathrm{T}}$) multiplicada pelo inverso da covariância do erro total (quanto maior a covariância do erro da previsão em relação à covariância do erro da observação, maior é a correção na previsão - e se $\mathbf{R}=0$?):

$$\mathbf{W} = \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{R} + \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}})^{-1}$$

• A covariância do erro da análise é dada pela covariância do erro da previsão, reduzida por uma matriz igual à matriz identidade menos a matriz de peso

$$\mathbf{P}_a = (\mathbf{I} - \mathbf{W}\mathbf{H})\mathbf{B}$$

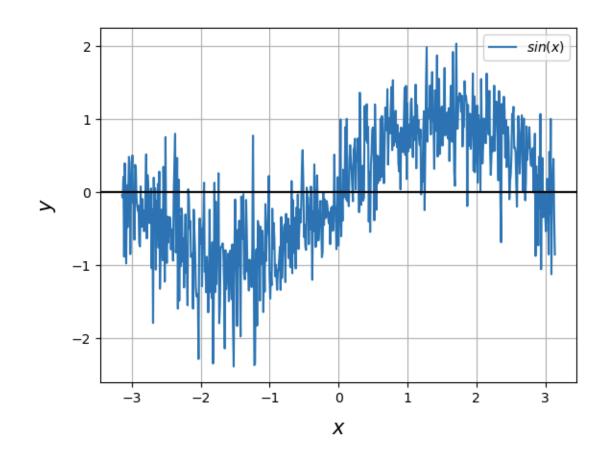
Objective Analysis of Meteorological Fields (Gandin, 1963)

Exemplo 1D

Considere um modelo matemático simples:

$$f(x) = \sin(x) + arepsilon, \quad arepsilon \sim \mathcal{N}(0, \sigma^2), \quad -\pi \leq x \leq \pi$$

 A função seno com a adição de um ruído normalmente distribuído



Objective Analysis of Meteorological Fields (Gandin, 1963)

Exemplo 1D

```
x = np.arange(-np.pi, np.pi, 0.01)
xb_seno = np.sin(x)
```

• Outra forma de acrescentar o ruído:

```
sigma = 0.5
ruido = np.random.randn(*x.shape) * sigma
xb = xb_seno + ruido
```

Objective Analysis of Meteorological Fields (Gandin, 1963)

```
# Posições

obs_pos = np.array([-2.2, -2.1, -2.0, -1.8, 0.9, 1, 2, 3])

# Valores medidos

obs_vals = np.array([-2.2, -1.8, 0.9, 0, 1, 2, 3, 4])
```

Objective Analysis of Meteorological Fields (Gandin, 1963)

```
# Função peso IO

L=0.5
sigma_b=0.5
sigma_o=0.1

def weight_io(x_grid, obs_x, obs_val, xb, L=L, sigma_b=sigma_b, sigma_o=sigma_o):
    def cov(a, b): return sigma_b**2 * np.exp(-((a - b)**2)/(2*L**2))
    n = len(x_grid)
    p = len(obs_x)
    B_Ht = np.array([[cov(xi, xj) for xj in obs_x] for xi in x_grid])
    HBHt = np.array([[cov(xi, xj) for xi in obs_x] for xj in obs_x])
    R = np.eye(p) * sigma_o**2
    K = B_Ht @ np.linalg.inv(HBHt + R)
    Hxb = np.interp(obs_x, x_grid, xb)
    return xb + K @ (obs_val - Hxb)
```

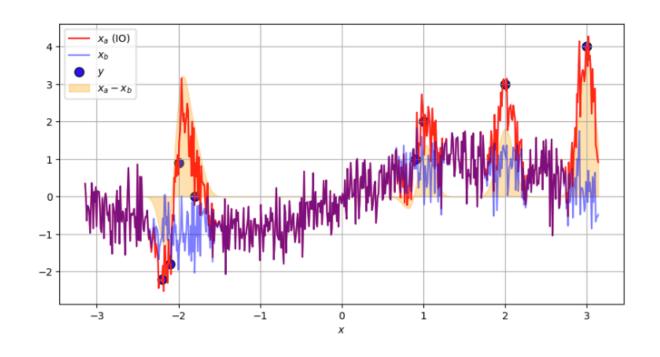
- Note que estamos utilizando o modelo de covariâncias Gaussiano para ${f B}$ e ${f R}$, com média $\mu=0,5$ e desvios-padrão $\sigma_b=0,5$ e $\sigma_o=0,1$
- ullet L, assim como no exemplo do método de correções sucessivas, restringe a influência das observações no ponto analisado

Objective Analysis of Meteorological Fields (Gandin, 1963)

```
# Cálculo da Análise - embutido na função anterior e dada por xb + K @ (obs_val - Hxb)
# Chamada da função peso (retorna o valor da análise)
xa = weight_io(x, obs_x, obs_val, xb)
```

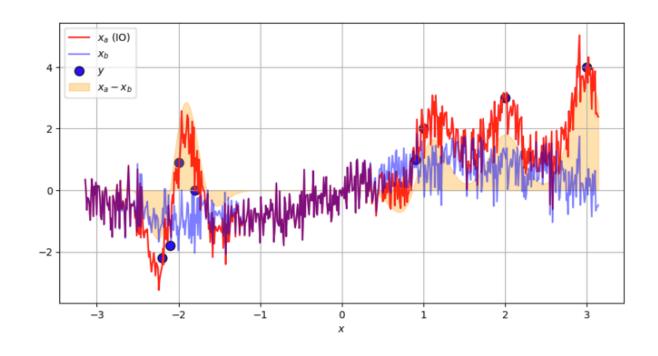
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - $\cdot L = 0, 1$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



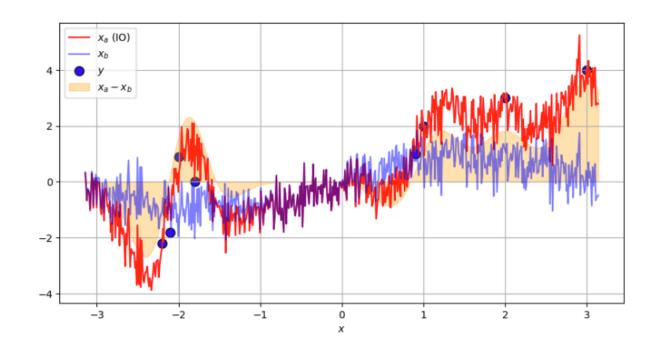
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - $\circ \ L=0,2$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



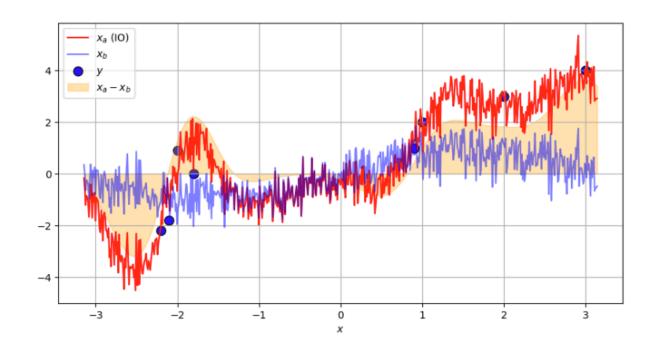
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - $\circ \ L=0,3$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



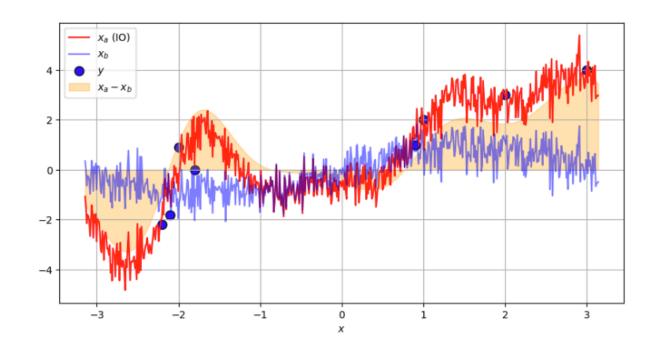
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - $\circ \ L=0,4$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



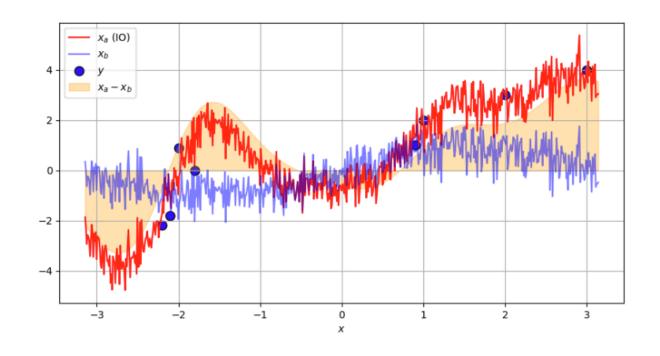
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



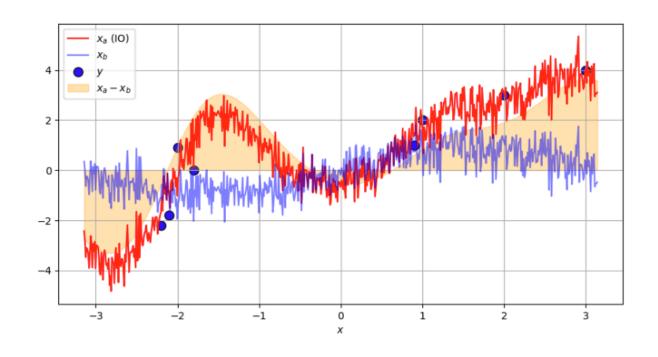
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - $\circ L=0,6$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



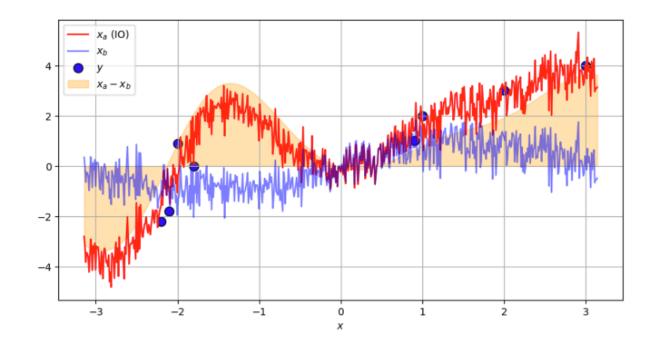
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - $\circ \ L=0,7$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



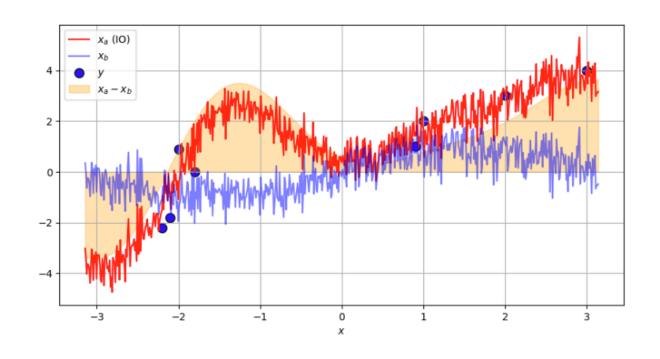
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - L = 0.8
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



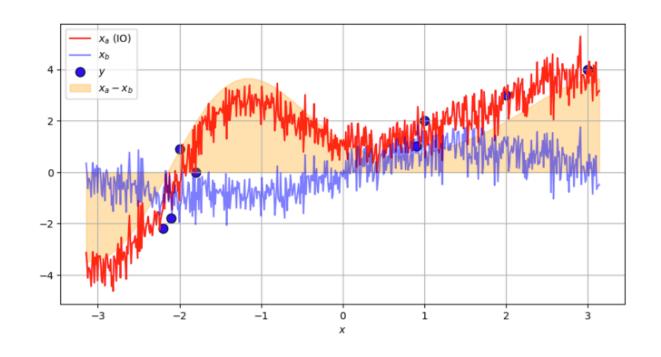
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - L = 0, 9
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



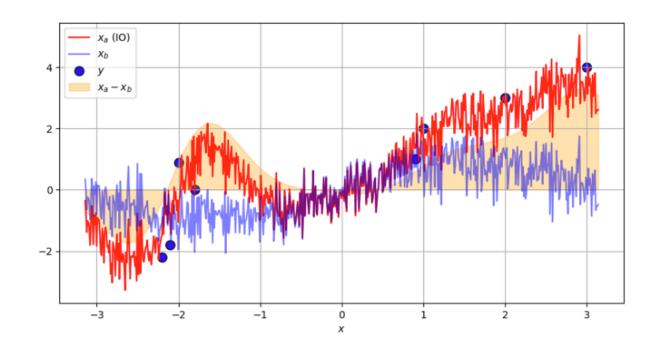
Objective Analysis of Meteorological Fields (Gandin, 1963)

- ullet Efeitos da escala de correlação L:
 - $\circ L=1,0$
 - $\circ \,\, \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



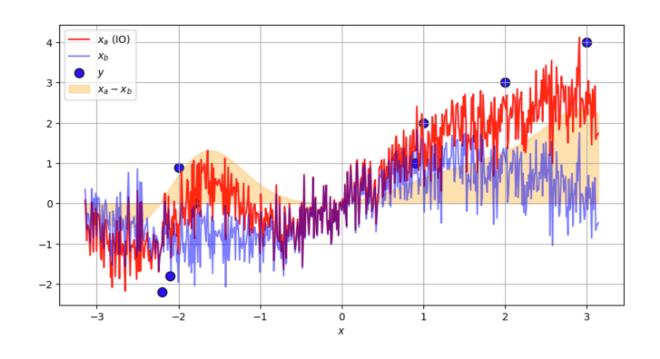
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_b :
 - $\circ \ L=0,5$
 - $\circ \ \sigma_b = 0,25$
 - $\circ \ \sigma_o = 0,1$



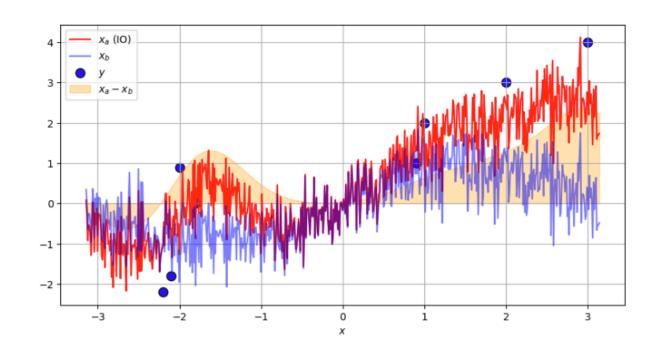
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_b :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,125$
 - $\circ \ \sigma_o = 0,1$



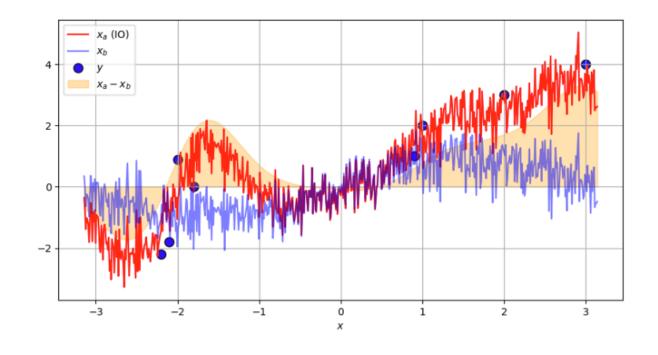
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_b :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,125$
 - $\circ \ \sigma_o = 0,1$



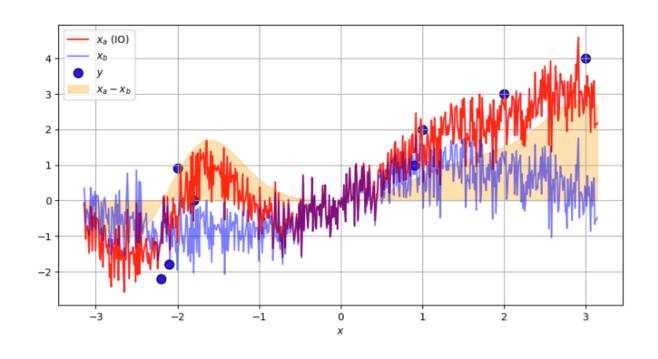
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_o :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,2$



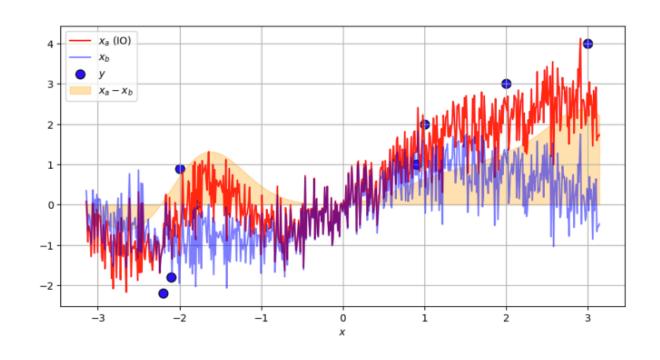
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_o :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,3$



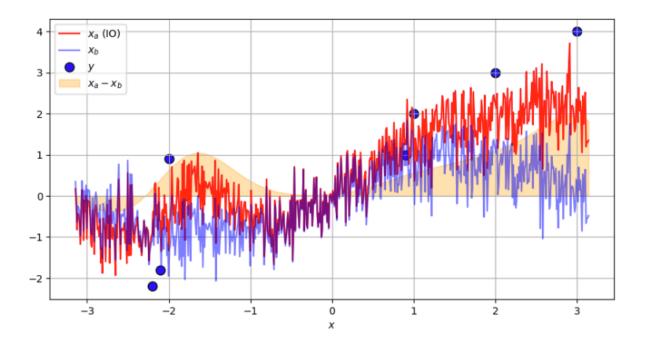
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_o :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,4$



Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_o :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,5$



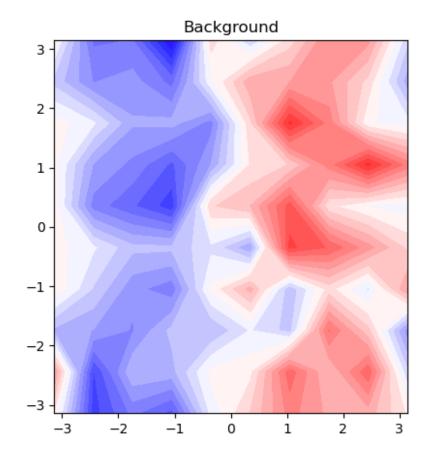
Objective Analysis of Meteorological Fields (Gandin, 1963)

Exemplo 2D

• Considere um modelo matemático simples:

$$f(x,y) = \sin(x) + arepsilon, \quad arepsilon \sim \mathcal{N}(0,\sigma^2), \quad -\pi \leq x \leq \pi, \quad -\pi \leq y \leq \pi$$

- A função seno com a adição de um ruído normalmente distribuído
- Definimos um plano Cartesiano de 100 pontos onde esta função será aplicada



Objective Analysis of Meteorological Fields (Gandin, 1963)

- Definimos dois vetores com o domínio para $x \in y$
- Definimos uma malha a partir dos valores do domínio

```
lon = np.linspace(-np.pi, np.pi, 10)
lat = np.linspace(-np.pi, np.pi, 10)

X, Y = np.meshgrid(lon, lat)
```

Objective Analysis of Meteorological Fields (Gandin, 1963)

- Aplicamos a função sin para os valores do domínio
- Definimos um ruído
- Somamos o ruído à função

```
xb_seno = np.sin(X)
sigma = 0.5
ruido = np.random.randn(*X.shape) * sigma
xb_2d = xb_seno + ruido
```

Objective Analysis of Meteorological Fields (Gandin, 1963)

Exemplo 2D

Definição das posições e valores das observações

```
# Posições
obs_x = np.array([-2.2, -2.1, -2.0, -1.8, 0.9, 1.0, 2.0, 3.0])
obs_y = np.array([ -1, 0.5, -0.5, 2, -2.8, 1.0, 0.0, 0.5])

# Valores medidos
obs_val = np.array([-1.0, -1.5, -2.0, -1.0, 1.0, 0.0, 0.5, 0.0])
```

Objective Analysis of Meteorological Fields (Gandin, 1963)

```
# Função peso IO

L=0.5
sigma_b=0.5
sigma_o=0.1

def weight_io_2d(X, Y, obs_x, obs_y, obs_val, xb, L=L, sigma_b=sigma_b, sigma_o=sigma_o):
    obs_pos = np.vstack((obs_x, obs_y)).T
    grid_pos = np.vstack((X.ravel(), Y.ravel())).T
    def cov(p1, p2): return sigma_b**2 * np.expl-np.sum((p1 - p2)**2)/(2*L**2))
    B = np.array([[cov(p1, p2) for p2 in obs_pos] for p1 in obs_pos])
    Hx = np.array([[cov(p1, p2) for p2 in obs_pos] for p1 in grid_pos])
    R = np.eye(len(obs_x))*sigma_o**2
    K = Hx @ np.linalg.inv(B + R)
    Hxb = np.interp(obs_x, np.linspace(0, 2*np.pi, X.shape[1]), xb.mean(axis=0))
    ana = xb.ravel() + K @ (obs_val - Hxb)
    return ana.reshape(X.shape)
```

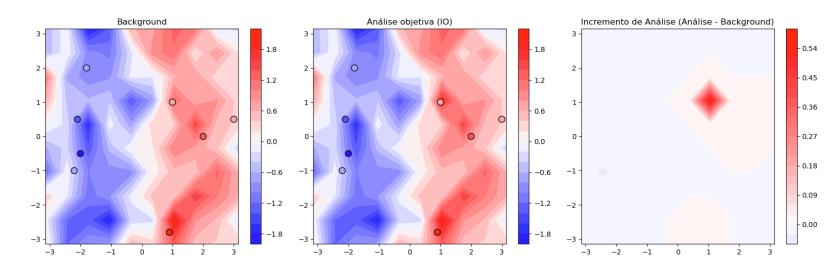
- Note que estamos utilizando o modelo de covariâncias Gaussiano para ${f B}$ e ${f R}$, com média $\mu=0,5$ e desvios-padrão $\sigma_b=0,5$ e $\sigma_o=0,1$
- \bullet L, assim como no exemplo do método de correções sucessivas, restringe a influência das observações no ponto analisado

Objective Analysis of Meteorological Fields (Gandin, 1963)

```
# Cálculo da Análise - embutido na função anterior e dada por xb + K @ (obs_val - Hxb)
# Chamada da função peso (retorna o valor da análise)
xa = weight_io_2d(X, Y, obs_x, obs_y, obs_val, xb_2d)
```

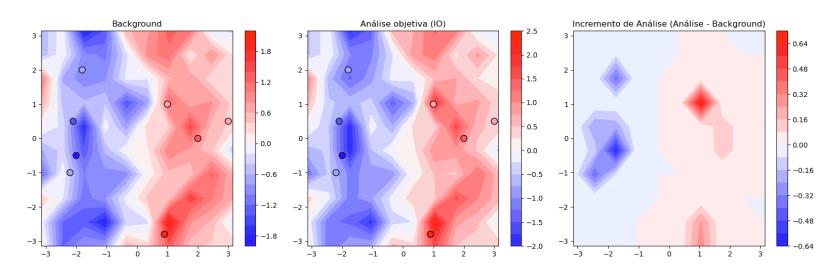
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - $\circ L=0,1$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



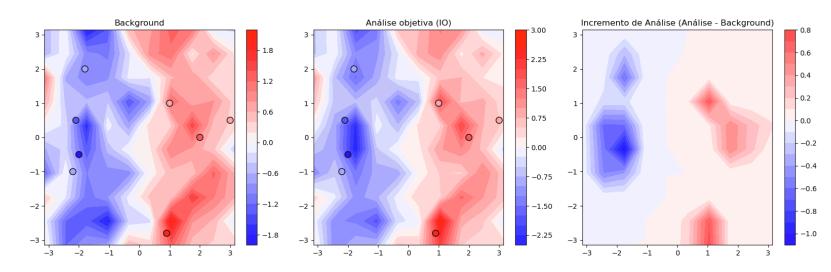
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - $\circ \ L=0,2$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



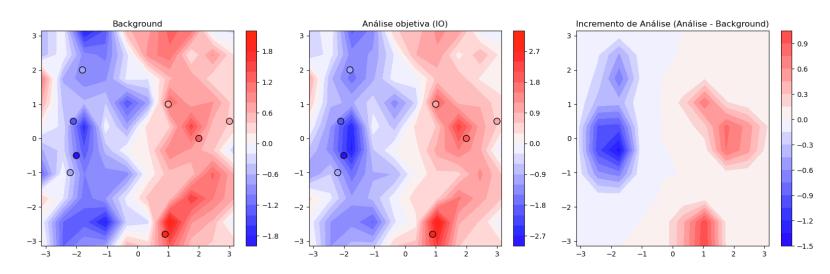
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - $\circ L=0,3$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



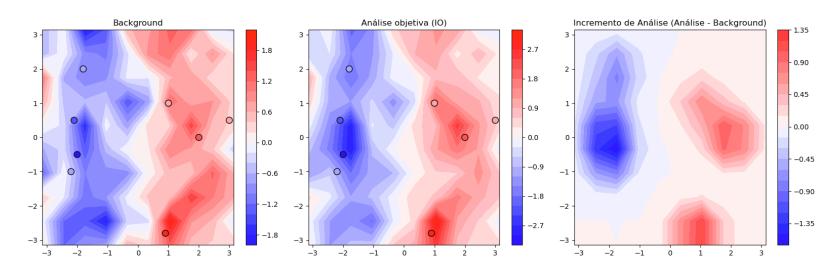
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - $\circ \ L=0,4$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



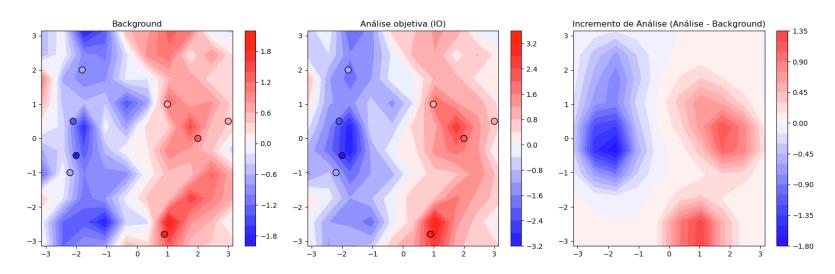
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



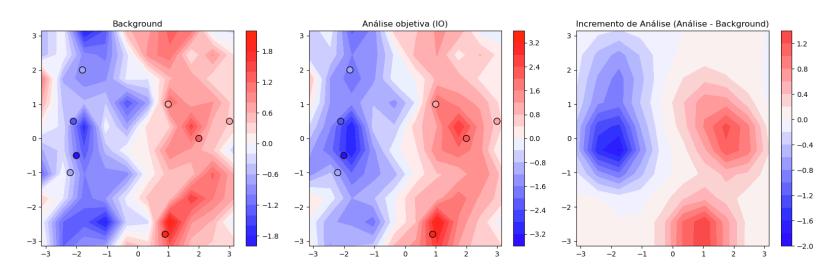
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - L = 0, 6
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



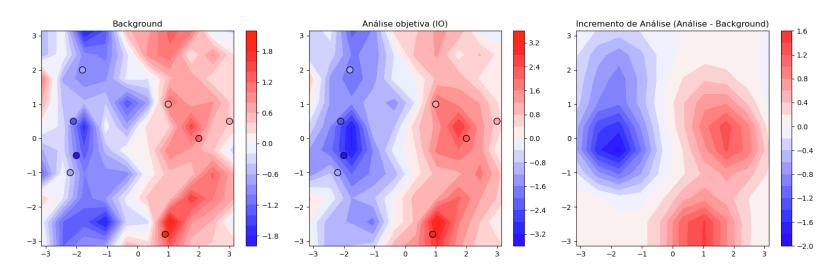
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - $\circ L=0,7$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



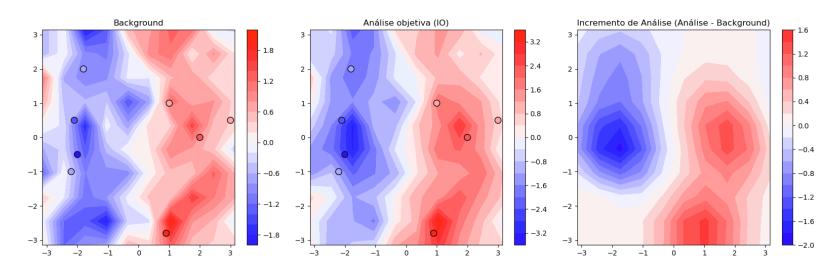
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - L = 0.8
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



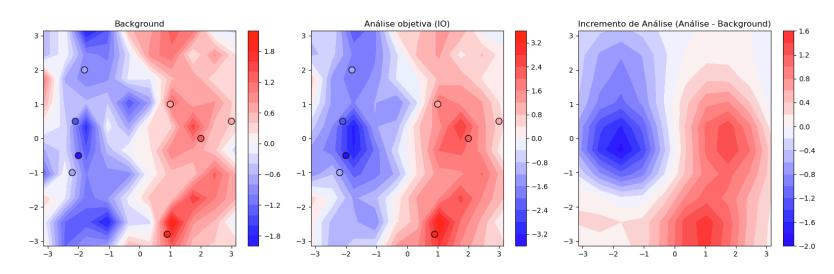
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - L = 0, 9
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



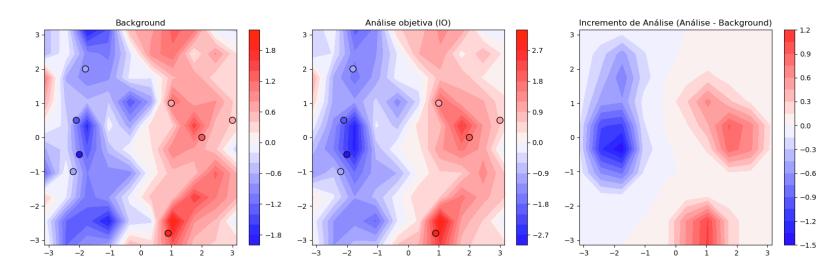
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da escala de correlação L:
 - $\circ L=1,0$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,1$



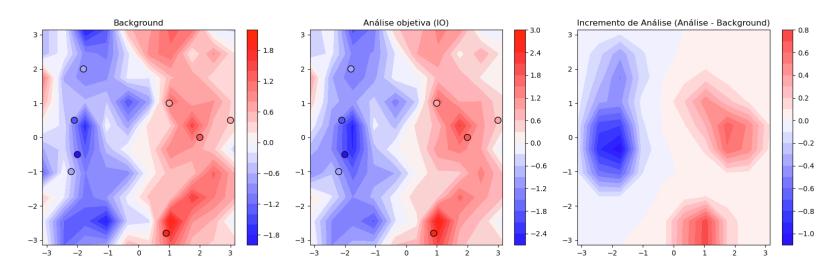
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_b :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,25$
 - $\circ \ \sigma_o = 0,1$



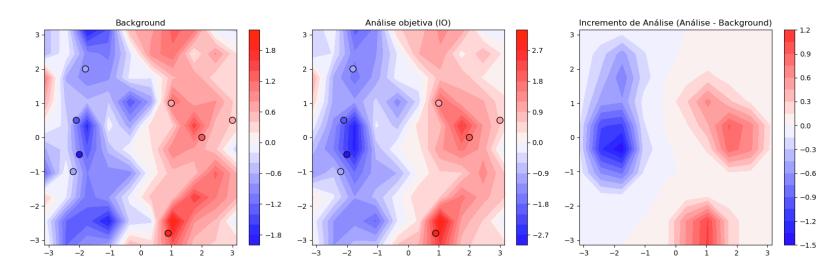
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_b :
 - $\circ L=0,5$
 - $\sigma_b = 0,125$
 - $\circ \ \sigma_o = 0,1$



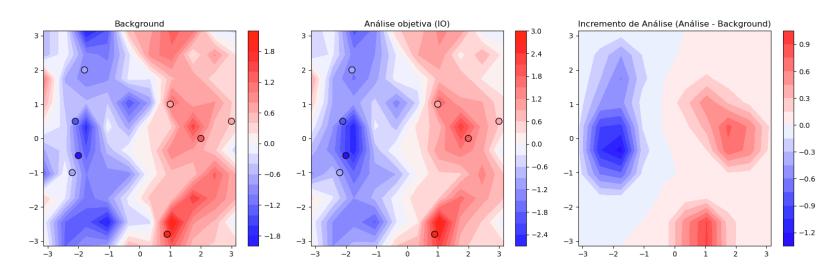
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_o :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,2$



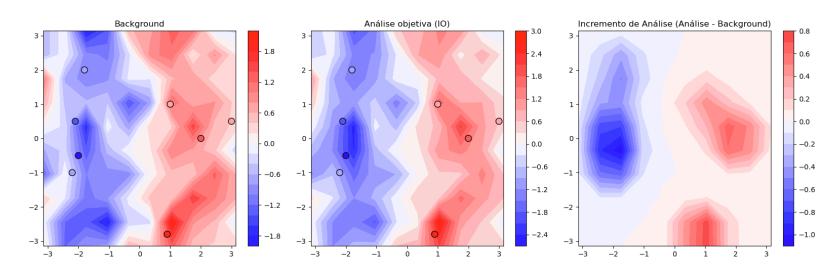
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_o :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,3$



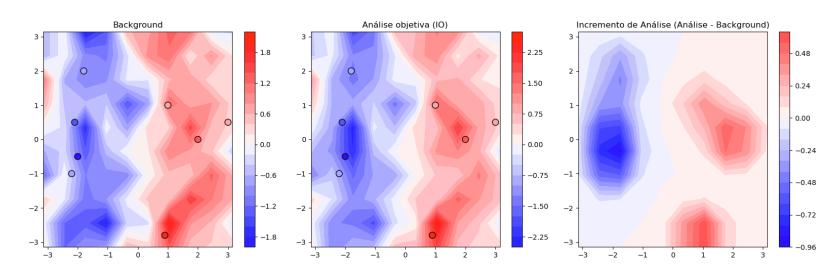
Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_o :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\sigma_o = 0,4$



Objective Analysis of Meteorological Fields (Gandin, 1963)

- Efeitos da amplitude de σ_o :
 - $\circ L=0,5$
 - $\circ \ \sigma_b = 0,5$
 - $\circ \ \sigma_o = 0,5$



Objective Analysis of Meteorological Fields (Gandin, 1963)

Notebook com <u>Atividade Prática 5</u>

https://cfbastarz.github.io/met563-3/

https://github.com/cfbastarz/MET563-3

🔀 <u>carlos.bastarz@inpe.br</u>

